Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Complement Med Ther ; 24(1): 105, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413973

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a prevalent autoimmune disease marked by chronic synovitis as well as cartilage and bone destruction. Halofuginone hydrobromide (HF), a bioactive compound derived from the Chinese herbal plant Dichroa febrifuga Lour., has demonstrated substantial anti-arthritic effects in RA. Nevertheless, the molecular mechanisms responsible for the anti-RA effects of HF remain unclear. METHODS: This study employed a combination of network pharmacology, molecular docking, and experimental validation to investigate potential targets of HF in RA. RESULTS: Network pharmacology analyses identified 109 differentially expressed genes (DEGs) resulting from HF treatment in RA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses unveiled a robust association between these DEGs and the IL-17 signaling pathway. Subsequently, a protein-protein interaction (PPI) network analysis revealed 10 core DEGs, that is, EGFR, MMP9, TLR4, ESR1, MMP2, PPARG, MAPK1, JAK2, STAT1, and MAPK8. Among them, MMP9 displayed the greatest binding energy for HF. In an in vitro assay, HF significantly inhibited the activity of inflammatory macrophages, and regulated the IL-17 signaling pathway by decreasing the levels of IL-17 C, p-NF-κB, and MMP9. CONCLUSION: In summary, these findings suggest that HF has the potential to inhibit the activation of inflammatory macrophages through its regulation of the IL-17 signaling pathway, underscoring its potential in the suppression of immune-mediated inflammation in RA.


Asunto(s)
Artritis Reumatoide , Metaloproteinasa 9 de la Matriz , Piperidinas , Quinazolinonas , Humanos , Simulación del Acoplamiento Molecular , Interleucina-17 , Farmacología en Red , Transducción de Señal , Artritis Reumatoide/tratamiento farmacológico
2.
Biomed Pharmacother ; 165: 115200, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37499459

RESUMEN

BACKGROUND: Xin-tong-tai Granule (XTTG), a traditional Chinese medicine, has been used to treat atherosclerosis (AS), but its mechanism is poorly understood. Intriguingly, oxidative stress has been recognized as vital factors in the treatment of atherosclerosis. PURPOSE: This study aims to explore the potential mechanism of XTTG for treating AS. METHODS: An in-vivo model of AS was established by feeding ApoE-/- mice with a high-fat diet (HFD), and the Human Aortic Vascular Smooth Muscle Cells (HAVSMCs) were induced by oxidized low-density lipoprotein (ox-LDL) in vitro. After treatment, the blood lipid levels and pathological aortic changes of each group were observed, and the cell proliferation and lipid droplet aggregation in each group were evaluated. The oxidative stress indicators such as malondialdehyde (MDA) and superoxide dismutase (SOD) levels and related NOX/ROS/NF-κB signaling pathway indicators were observed. RESULTS: XTTG improved blood lipid levels and pathological aortic changes of ApoE-/- mice with HFD feeding, inhibited HAVSMCs proliferation and lipid droplet aggregation induced by ox-LDL, reduced MDA content, increased SOD content, inhibited NOX4 and p22phox protein expression, downregulated ROS content, inhibited IKK-α, IKK-ß, NF-κB protein and mRNA expression and the phosphorylation of NF-κB. CONCLUSION: XTTG can inhibit NOX/ROS/NF-κB signaling pathway, reduce damages caused by oxidative stress, and exert anti-AS effects.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Estrés Oxidativo , Transducción de Señal , Animales , Humanos , Ratones , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/genética , Lipoproteínas LDL/farmacología , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Medicamentos Herbarios Chinos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA